sábado, 12 de setembro de 2020

 



 UM SISTEMA COM INFINITAS PARTÍCULAS, INFINITAS E ÍNFIMAS INTERAÇÕES, TRANSFORMAÇÕES, FENÔMENOS DENTRO DAS FÍSICAS QUÂNTICA, CLÁSSICA, QUÍMICA, E BIOLOGIA MOLECULAR NÃO SE TEM COMO DETERMINAR A VELOCIDADE E INTENSIDADE DE FENÔMENOS, INTERAÇÕES, TRANSFORMAÇÕES, E OUTROS, EM DETERMINADO MOMENTO [TEMPO], E ESPAÇO.



E CONFORME O SDCITE GRACELI.





ESTADOS DE ENERGIAS  QUÂNTICO DE GRACELI.

se tem sensibilidades térmicas diferentes conforme os tipos de materiais e tipos de energias que são empregadas, provando assim que os estados de energias e quântico variam conforme são empregadas tipos diferenciados de energias.


ou seja, com amesma temperatura se tem sensibilidades variadas conforme esta temperaura foi produzida sobre um esmo material.

e o mesmo acorre sobre materiais diferenciados.

ou seja, estados de energias variados em mesmos materiais, e também em materiais diferenciados.
X


TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI

TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.




FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

X
 [ESTADO QUÂNTICO]


X

TODA FORMA DE FUNÇÃO E EQUAÇÃO EM:


renormalização é um conjunto de técnicas utilizadas para eliminar os infinitos que aparecem em alguns cálculos em Teoria Quântica de Campos.[1] Na mecânica estatística dos campos[2] e na teoria de estruturas geométricas auto-similares,[3] a renormalização é usada para lidar com os infinitos que surgem nas quantidades calculadas, alterando valores dessas quantidades para compensar os efeitos das suas auto-interações. Inicialmente vista como um procedimento suspeito e provisório por alguns de seus criadores, a renormalização, eventualmente, foi abraçada como uma ferramenta importante e auto-consistente em vários campos da física e da matemática. A renormalização é distinta da outra técnica para controlar os infinitos, regularização, que assume a existência de uma nova física desconhecida em novas escalas.[4]


Renormalização em EDQ[editar | editar código-fonte]

Em Lagrangeano de EDQ,


X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Os campos e a constante de acoplamento são realmente quantidades "cruas", por isso, o índice B acima. Convencionalmente, as quantidades cruas são escritas de modo que os termos lagrangianos correspondentes sejam múltiplos dos renormalizados:


X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



Teoria de gauge e Identidade de Ward-Takahashi[5][6] implicam que podemos renormalizar os dois termos da parte derivada covariante  juntos[7], que é o que aconteceu para Z2, é o mesmo com Z1.[8]




Na teoria quântica de campos, uma identidade de Ward-Takahashi é uma identidade entre funções de correlação que decorre das simetrias globais ou de calibre da teoria e que permanece válida após a renormalização. A identidade de Ward-Takahashi da eletrodinâmica quântica foi originalmente usada por John Clive Ward[1] e Yasushi Takahashi[2] para relacionar a renormalização da função de onda do elétron ao seu fator de renormalização de vértices, garantindo o cancelamento da divergência ultravioleta em todas as ordens da teoria das perturbações. Usos posteriores incluem a extensão da prova do teorema de Goldstone a todas as ordens da teoria da perturbação.[3][4]

De maneira mais geral, uma identidade de Ward-Takahashi é a versão quântica da conservação de corrente clássica associada a uma simetria contínua pelo teorema de Noether.

Identidade de Ward-Takahashi formalizada[editar | editar código-fonte]

A identidade de Ward-Takahashi aplica-se a funções de correlação no espaço de momento, que não têm necessariamente toda a sua Momenta externa na on shell.[5] Deixe

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



ser uma função de correlação QED envolvendo um fóton externo com momento k (onde  é o vetor de polarização do fóton e a soma sobre  is implied), n elétrons de estado inicial com momento , e n elétrons de estado final com momento . Defina também  ser a amplitude mais simples obtida pela remoção do fóton com momento k da nossa amplitude original. Então a identidade de Ward-Takahashi diz


X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde e é a carga do elétron e tem sinal negativo.Observe que se  tem seus elétrons externos off-shell, então as amplitudes do lado direito dessa identidade têm uma partícula externa off-shell e, portanto, não contribuem para os elementos da matriz S.

Identidade de Ward[editar | editar código-fonte]

A identidade de Ward é uma especialização da identidade Ward-Takahashi para elementos da matriz S, que descrevem processos de dispersão fisicamente possíveis e, portanto, têm todas as suas partículas externas on-shell. Novamente deixe  ser a amplitude de algum processo QED envolvendo um fóton externo com impulso , onde  é o vetor de polarização do fóton.[6] Então a identidade da ala diz:

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Fisicamente, o que essa identidade significa é a polarização longitudinal do fóton que surge no gauge ξ é anti-físico e desaparece da matriz S. Exemplos de seu uso incluem a restrição da estrutura tensorial da polarização do vácuo e da função de vértice de elétrons no QED.[7]







Na física quântica, a interação spin-órbita (também chamado efeito spin-órbita ou acoplamento spin-órbita) é qualquer interação de partículas de spin com seu movimento. O primeiro e mais conhecido exemplo disto é que a interação spin-órbita provoca mudanças nos níveis de energia atômica de elétrons devido a uma interação entre o momento de dipolo magnético do spin e o campo magnético interno do átomo gerado pela órbita do elétron em torno do núcleo. Isto é detectável como uma divisão de linhas espectrais. Um efeito similar, devido à relação entre o momento angular e da força nuclear forte, ocorre por prótons e nêutrons em movimento dentro do núcleo, levando a uma mudança nos seus níveis de energia no modelo de concha do núcleo. No campo da spintrônica, os efeitos spin-órbita de elétrons em semicondutores e outros materiais são explorados para aplicações tecnológicas.[1] A interação spin-órbita é uma das causas da anisotropia magnetocristalina.


Momentos angulares e momentos magnéticos (imagem semi-clássica)[editar | editar código-fonte]

Uma corrente numa espira tem associado a ela um momento magnético dado por:

 .

Nessa expressão  é a intensidade da corrente e  é o vetor área cuja direção é perpendicular ao plano da espira e o sentido é consistente com a regra do parafuso de rosca direita:

i = carga do electrão X número de vezes por segundo que o electrão passa num dado ponto = e.f onde f é a frequência de rotação do electrão.

Módulo do momento de dípolo magnético

Cuja direção é oposta a do momento angular orbital  porque o electrão possui carga negativa.

Agora

Portanto

 (Z)

Dado que o momento angular é quantizado, temos:

Na primeira órbita de Bohr, m = 1 e a equação (Z) torna-se

 (Y)

onde  é chamado magnetão de Bohr e o seu valor é dado por


Pode-se ver da Equação (Y) que  é anti-paralelo ao momento angular orbital.

rácio entre o momento magnético e o momento angular orbital é chamado o rácio giromagnético clássico,

 (X)

O momento angular de spin também possui um momento magnético a ele associado.

O seu rácio giromagnético é aproximadamente duas vezes o valor clássico para o momento orbital, isto é,

 (K)

Isso significa que o spin é duas vezes mais eficaz em produzir um momento magnético do que o momento angular.

Equações (X) e (K) são muitas vezes combinados, escrevendo

onde a grandeza g é chamada o fator de divisão espectroscópico. Para momentos angulares orbitais g = 1, para spin apenas g ≈ 2 (embora experimentalmente g = 2 004).

Para os Estados que são misturas de momento angular orbital e momento angular de spin, g não é inteiro .

Dado que

O momento magnético devido ao spin do electrão é:

Assim, a menor unidade de momento magnético para o electrão é o magnetão de Bohr, quer se combine momento angular orbital ou spin.

A interação spin-órbita (mecânica quântica)[editar | editar código-fonte]

Na inclusão introdutória do spin na função de onda de Schrodinger, supõe-se que as coordenadas do spin são independentes das coordenadas do espaço de configuração.[2]

Assim, a função de onda total é escrita como uma função de produto.

 (P)

A suposição feita acima implica que não existe interação entre L e S, i.e

Neste caso,  é uma auto-função de ambos  e  e portanto  e  são bons números quânticos; em outras palavras, as projeções de  e  são constantes do movimento.

Mas na verdade existe uma interação entre  e  chamada interação Spin-Órbita expressa em termos da grandeza .

Dado que  não comuta quer com  ou com , a equação (P) torna-se incorreta e  e  deixam de ser bons números quânticos. 

Nós imaginamos a interação spin-órbita como o momento magnético spin estacionária interagindo com o campo magnético produzido pelo núcleo orbitante.

No sistema de referência de repouso do electrão, há um campo eléctrico

Onde  dirige‐se do núcleo em direção ao electrão. 

Assumindo que  é a velocidade do electrão no sistema de referência de repouso do núcleo, a corrente produzida pelo movimento nuclear é: 

No sistema de referência de repouso do electrão.

Portanto

O momento de spin do electrão realiza um movimento precessional neste campo com frequência de Larmor:

Com energia potencial

As equações acima são válidas no quadro de referência de repouso electrão.

A Transformação para o sistema de referência de repouso do núcleo introduz um fator de ½ - chamado o fator de Thomas. [Isto pode ser mostrado, calculando o tempo dilatado entre os dois sistemas de referência em repouso].[2]

Portanto, um observador no sistema de referência de repouso do núcleo poderia observar o electrão a realizar um movimento de precessão com uma velocidade angular de

 (T)

e por uma energia adicional dada por

As duas Eqs acima podem ser colocadas em uma forma mais geral, restringindo o V ser qualquer potencial central com simetria esférica.

De forma que

e então

A equação (T) torna-se então

E a energia adicional

O produto escalar

Para spin = ½

A separação energética se torna então

Para o potencial de Coulomb a separação energética pode ser aproximada por:

Onde

é o comprimento de onda de Compton

 ou 

Um resultado útil no cálculo é citado sem prova. O valor médio de  i.e.

para 

De modo que a separação energética se torna

para 

Esquemas de acoplamento do momento angular[editar | editar código-fonte]

Consideramos até agora somente o acoplamento do spin e momento orbital de um único electrão por meio da interação spin-órbita. Nós agora vamos considerar o caso de dois electrões nos quais há quatro momentos constituintes.

O modelo de acoplamento j - j[editar | editar código-fonte]

Este modelo assume que a interação de spin-órbita domina as interações electrostáticas entre as partículas.

Assim, nós escrevemos para cada partícula

O momento angular total é obtido combinando  e  :

.

sendo assim temos

Ilustramos o acoplamento j-j aplicando-o a dois electrões p não equivalentes.

Para cada electrão

 ou 

Em um campo magnético fraco, cada Estado de um determinado j irá desdobrar-se em (2j+1) estados, correspondendo aos valores permitidos de mj.

Embora o acoplamento j-j seja amplamente utilizado para a descrição dos estados nucleares observados em espectroscopia nuclear, não é adequado para muitos sistemas atómicos por causa das interações electrostáticas e outras interações entre os dois electrões.

O esquema de acoplamento de Russell-Saunders[editar | editar código-fonte]

O modelo de acoplamento de Russell-Saunders tem sido mais bem sucedido no enquadramento dos espectros atómicos de todos, excepto dos átomos mais pesados. O modelo pressupõe que a interação electrostática, incluindo forças de intercâmbio,

entre dois electrões domina a interação de spin-órbita. Neste caso, os momentos orbitais e os spins dos dois electrões combinam separadamente para formar

O momento angular total é dado, por

O valor absoluto de  , corresponde a:

onde os valores possíveis de L são:

 para 

O número quântico l determina as características do nível:

l=1, corresponde ao nível P, mas não significa necessariamente que a configuração de um dos electrões esteja individualmente num estado p.

As transições ópticas seguem as seguintes regras de seleção:

 para um só electrão

 para o sistema total.

significa que os estados quânticos dos dois electrões variam simultaneamente, e em direções opostas, o que só é possível quando o acoplamento é forte, como é o caso dos átomos pesados.

Para dois electrões-p não equivalente temos:

Para cada l e s, os valores de j são 

para cada valor de j existem (2j+1) valores de . As combinações são dadas na tabela.

Observar-se-á que, apesar do número de Estados é uma vez mais 36 em um campo magnético fraco, as suas energias não são as mesmas que aquelas no esquema de acoplamento j-j